May 12, 2020 Volume 16 Issue 18

Motion Control News & Products

Designfax weekly eMagazine

Subscribe Today!
image of Designfax newsletter

Archives

View Archives

Partners

Manufacturing Center
Product Spotlight

Modern Applications News
Metalworking Ideas For
Today's Job Shops

Tooling and Production
Strategies for large
metalworking plants

Overhung load adaptors provide load support and contamination protection

Overhung load adaptors (OHLA) provide both overhung radial and axial load support to protect electrified mobile equipment motors from heavy application loads, extending the lifetime of the motor and alleviating the cost of downtime both from maintenance costs and loss of production. They seal out dirt, grime, and other contaminants too. Zero-Max OHLAs are available in an extensive offering of standard models (including Extra-Duty options) for typical applications or customized designs.
Learn more.


Why choose electric for linear actuators?

Tolomatic has been delivering a new type of linear motion technology that is giving hydraulics a run for its money. Learn the benefits of electric linear motion systems, the iceberg principle showing total cost of ownership, critical parameters of sizing, and conversion tips.
Get this informative e-book. (No registration required)


New AC hypoid inverter-duty gearmotors

Bodine Electric Company introduces 12 new AC inverter-duty hypoid hollow shaft gearmotors. These type 42R-25H2 and 42R-30H3 drives combine an all-new AC inverter-duty, 230/460-VAC motor with two hypoid gearheads. When used with an AC inverter (VFD) control, these units deliver maintenance-free and reliable high-torque output. They are ideal for conveyors, gates, packaging, and other industrial automation equipment that demands both high torque and low power consumption from the driving gearmotor.
Learn more.


Next-gen warehouse automation: Siemens, Universal Robots, and Zivid partner up

Universal Robots, Siemens, and Zivid have created a new solution combining UR's cobot arms with Siemens' SIMATIC Robot Pick AI software and Zivid's 3D sensors to create a deep-learning picking solution for warehouse automation and intra-logistics fulfillment. It works regardless of object shape, size, opacity, or transparency and is a significant leap in solving the complex challenges faced by the logistics and e-commerce sectors.
Read the full article.


Innovative DuoDrive gear and motor unit is UL/CSA certified

The DuoDrive integrated gear unit and motor from NORD DRIVE-SYSTEMS is a compact, high-efficiency solution engineered for users in the fields of intralogistics, pharmaceutical, and the food and beverage industries. This drive combines a IE5+ synchronous motor and single-stage helical gear unit into one compact housing with a smooth, easy-to-clean surface. It has a system efficiency up to 92% and is available in two case sizes with a power range of 0.5 to 4.0 hp.
Learn more.


BLDC flat motor with high output torque and speed reduction

Portescap's 60ECF brushless DC slotted flat motor is the newest frame size to join its flat motor portfolio. This 60-mm BLDC motor features a 38.2-mm body length and an outer-rotor slotted configuration with an open-body design, allowing it to deliver improved heat management in a compact package. Combined with Portescap gearheads, it delivers extremely high output torque and speed reduction. Available in both sensored and sensorless options. A great choice for applications such as electric grippers and exoskeletons, eVTOLs, and surgical robots.
Learn more and view all the specs.


Application story: Complete gearbox and coupling assembly for actuator system

Learn how GAM engineers not only sized and selected the appropriate gear reducers and couplings required to drive two ball screws in unison using a single motor, but how they also designed the mounting adapters necessary to complete the system. One-stop shopping eliminated unnecessary components and resulted in a 15% reduction in system cost.
Read this informative GAM blog.


Next-gen motor for pump and fan applications

The next evolution of the award-winning Aircore EC motor from Infinitum is a high-efficiency system designed to power commercial and industrial applications such as HVAC fans, pumps, and data centers with less energy consumption, reduced emissions, and reduced waste. It features an integrated variable frequency drive and delivers upward of 93% system efficiency, as well as class-leading power and torque density in a low-footprint package that is 20% lighter than the previous version. Four sizes available.
Learn more.


Telescoping linear actuators for space-constrained applications

Rollon's new TLS telescoping linear actuators enable long stroke lengths with minimal closed lengths, which is especially good for applications with minimal vertical clearance. These actuators integrate seamlessly into multi-axis systems and are available in two- or three-stage versions. Equipped with a built-in automated lubrication system, the TLS Series features a synchronized drive system, requiring only a single motor to achieve motion. Four sizes (100, 230, 280, and 360) with up to 3,000-mm stroke length.
Learn more.


Competitively priced long-stroke parallel gripper

The DHPL from Festo is a new generation of pneumatic long-stroke grippers that offers a host of advantages for high-load and high-torque applications. It is interchangeable with competitive long-stroke grippers and provides the added benefits of lighter weight, higher precision, and no maintenance. It is ideal for gripping larger items, including stacking boxes, gripping shaped parts, and keeping bags open. It has high repetition accuracy due to three rugged guide rods and a rack-and-pinion design.
Learn more.


Extend your range of motion: Controllers for mini motors

FAULHABER has added another extremely compact Motion Controller without housing to its product range. The new MC3603 controller is ideal for integration in equipment manufacturing and medical tech applications. With 36 V and 3 A (peak current 9 A), it covers the power range up to 100 W and is suitable for DC motors with encoder, brushless drives, or linear motors.
Learn more.


When is a frameless brushless DC motor the right choice?

Frameless BLDC motors fit easily into small, compact machines that require high precision, high torque, and high efficiency, such as robotic applications where a mix of low weight and inertia is critical. Learn from the experts at SDP/SI how these motors can replace heavier, less efficient hydraulic components by decreasing operating and maintenance costs. These motors are also more environmentally friendly than others.
View the video.


Tiny and smart: Step motor with closed-loop control

Nanotec's new PD1-C step motor features an integrated controller and absolute encoder with closed-loop control. With a flange size of merely 28 mm (NEMA 11), this compact motor reaches a max holding torque of 18 Ncm and a peak current of 3 A. Three motor versions are available: IP20 protection, IP65 protection, and a motor with open housing that can be modified with custom connectors. Ideal for applications with space constraints, effectively reducing both wiring complexity and installation costs.
Learn more.


Closed loop steppers drive new motion control applications

According to the motion experts at Performance Motion Devices, when it comes to step motors, the drive technique called closed loop stepper is making everything old new again and driving a burst of interest in the use of two-phase step motors. It's "winning back machine designers who may have relegated step motors to the category of low cost but low performance."
Read this informative Performance Motion Devices article.


Intelligent compact drives with extended fieldbus options

The intelligent PD6 compact drives from Nanotec are now available with Profinet and EtherNet/IP. They combine motor, controller, and encoder in a space-saving package. With its 80-mm flange and a rated power of 942 W, the PD6-EB is the most powerful brushless DC motor of this product family. The stepper motor version has an 86-mm flange (NEMA 34) and a holding torque up to 10 Nm. Features include acceleration feed forward and jerk-limited ramps. Reduced installation time and wiring make the PD6 series a highly profitable choice for machine tools, packaging machines, or conveyor belts.
Learn more.


What if GPS goes down? Air Force investigates using quantum materials in new navigation tool

By Mary Pacinda, Air Force Research Laboratory

Air Force Research Laboratory (AFRL) researchers Drs. Robert Bedford, Luke Bissell, Chandriker Dass, and Michael Slocum at Wright-Patterson Air Force Base in Ohio are finding practical applications for the curious phenomena that occur in quantum materials. Until the late 1990s, the properties -- or even the existence -- of such materials seemed little more than theoretical.

But what is a quantum material?

Once upon a time, the science of physics dealt mainly with the motion of objects that were big enough to see. Think billiard balls or vibrating guitar strings. But about 100 years ago, physicists began to seriously explore the very small and the very fast, that is, subatomic particles such as electrons or neutrons. It didn't take long for them to realize that classical physics was just not up to the task of describing the bewildering behavior of such particles. Clearly, they were matter, but they also behaved like waves.

"All matter is in a ‘quantum state' all of the time," said integrated photonics and optoelectronics team lead Dr. Robert Bedford. "But we typically can't see that, because we are looking at features that are much larger. Rather, what we see is the result of many incoherent quantum phenomena where all of the exciting physics sort of cancel each other out. The 'quantum stuff' is there, but we simply aren't taking advantage of it."

According to Bedford, however, science has been getting better at taking advantage of quantum phenomena. It is now possible to measure the state of these subatomic particles as well as the very fast interactions between them -- or at least to engineer those interactions to make them move more slowly so they can be observed in some way.

As science gains greater understanding of these quantum interactions, manipulating and using them is becoming a reality. Up to now, however, the easiest way to put them to work has been to reduce their temperature, requiring bulky and sensitive cooling equipment and making real-world quantum measurements wholly impractical or even impossible. Therefore, one goal, said Bedford, "is to allow the materials to exhibit the characteristics of these quantum phenomena at room temperature, without the need for such cooling."

The application that Bedford and Slocum are investigating is to create a navigation tool that could replace the GPS if it ever stops working.

"The high-level motivation," said Bedford, "is that when we don't have GPS -- and most people agree that if we have a major war, the GPS is going down -- we need a different way to navigate."

Some alternatives such as star-finders or looking at ground features have obvious limitations. For example, the stars are not visible during the day. One promising alternative would be to navigate by sensing Earth's magnetic field.

The magnetic field in question is not the "core field," the field generated by Earth's iron core. It is the "crustal field." The core field is constantly in flux. The north and south magnetic poles both wander over time. The crustal field, in contrast, is consistent and, in Bedford's words, "impossible to spoof."

Major components of Earth's magnetic field include the stronger core field, shown here, and the crustal field. The core field is stronger but varies slowly over time. [Graphic courtesy: AFRL]

 

 

 

 

"There is more information in the crustal field," said Bedford. "The information is also static, unlike the core field, which changes over time. The crustal field is of a much lower magnitude, however."

That's why more sensitive detecting instruments are needed, the kind made possible with quantum materials.

"If you can get high-enough-resolution magnetic field sensors," said Bedford, "you can take a known map of the magnetic fields of an area, then sense the magnetic fields of your present location and use the comparison to determine your exact location and what direction you're going."

Quantum materials can provide that type of resolution.

The Earth's crustal field, shown here, is weaker than the core field, but is fixed and has features that are useful in non-GPS navigation. The intensity of the fields is measured in nano teslas (nT), shown increasing in strength from blue to red. [Graphic courtesy of NOAA]

 

 

 

 

Quantum materials provide another clear advantage. "When using classical materials," said Bedford, "you have to be constantly recalibrating the instruments. In quantum systems, there is no need to recalibrate; there is no drift over time. You will always have an absolute measurement."

But quantum systems have yet another benefit over classical systems. "The instruments would also be more compact than those using classical techniques," said Bedford.

Although AFRL is not working on a prototype in-house, it is funding the Massachusetts Institute of Technology Lincoln Laboratory, which is working on a magnetometer prototype. "They are expecting to demonstrate a prototype device within the next year or so," said electronics engineer Dr. Michael Slocum.

Published May 2020

Rate this article

[What if GPS goes down? Air Force investigates using quantum materials in new navigation tool]

Very interesting, with information I can use
Interesting, with information I may use
Interesting, but not applicable to my operation
Not interesting or inaccurate

E-mail Address (required):

Comments:


Type the number:



Copyright © 2020 by Nelson Publishing, Inc. All rights reserved. Reproduction Prohibited.
View our terms of use and privacy policy